by tower3cat
使用符号$$
或$$$$
$\sum$
$$
\sum
$$
\sum
x^a
x_a
\times
\div
\pm
\approx
\frac{n}{n(n+1)}
\sqrt[n]{x}
\vert
\int_a^b
\sum_{i=0}^{n}
\lim
\infin
\nabla
\because
\therefore
\forall
\exists
\in
\notin
\subset
\subseteq
\emptyset
\leqslant
\geqslant
\alpha
\beta
\gamma
\theta
\lamba
\mu
\nu
\xi
\Delta
\delta
\pi
\to
\rightarrow
\Rightarrow
\Rightarrow
\Rightarrow
$$
\lim_{x\to\infin}\frac{sin(x)}{x}=?
$$
\lim_{x\to\infin}\frac{sin(x)}{x}=?
同济高数书第四章 例22
**例22**
$$
\int\frac{dx}{\sqrt{x^2+a^2}} (a>0)
$$
**解:**
$$
x=a\tan t
\Rightarrow
dx = a\sec^2 dt
$$
$$
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\int\frac{a\sec^2 t dt}{\sqrt{a^2\tan^2 t+a^2}}=
\int\frac{\sec^2 t dt}{\sqrt{\tan^2 t+1}}=
\int\frac{\sec^2 t dt}{\sec t}
$$
$$
=\int\sec t dt = \ln\vert\sec t +\tan t\vert +C
$$
$$
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\ln\vert\sec x +\tan x\vert +C
$$
例22
\int\frac{dx}{\sqrt{x^2+a^2}} (a>0)
解:
x=a\tan t
\Rightarrow
dx = a\sec^2 dt
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\int\frac{a\sec^2 t dt}{\sqrt{a^2\tan^2 t+a^2}}=
\int\frac{\sec^2 t dt}{\sqrt{\tan^2 t+1}}=
\int\frac{\sec^2 t dt}{\sec t}
=\int\sec t dt = \ln\vert\sec t +\tan t\vert +C
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\ln\vert\sec x +\tan x\vert +C
本文章使用limfx的vscode插件快速发布