by tower3cat
使用符号$$或$$$$
$\sum$
$$
\sum
$$
\sum
x^a x_a \times \div \pm \approx \frac{n}{n(n+1)} \sqrt[n]{x} \vert \int_a^b \sum_{i=0}^{n} \lim \infin \nabla \because \therefore \forall \exists \in \notin \subset \subseteq \emptyset \leqslant \geqslant \alpha \beta \gamma \theta \lamba \mu \nu \xi \Delta \delta \pi \to \rightarrow \Rightarrow \Rightarrow \Rightarrow $$
\lim_{x\to\infin}\frac{sin(x)}{x}=?
$$
\lim_{x\to\infin}\frac{sin(x)}{x}=?
同济高数书第四章 例22
**例22**
$$
\int\frac{dx}{\sqrt{x^2+a^2}} (a>0)
$$
**解:**
$$
x=a\tan t
\Rightarrow
dx = a\sec^2 dt
$$
$$
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\int\frac{a\sec^2 t dt}{\sqrt{a^2\tan^2 t+a^2}}=
\int\frac{\sec^2 t dt}{\sqrt{\tan^2 t+1}}=
\int\frac{\sec^2 t dt}{\sec t}
$$
$$
=\int\sec t dt = \ln\vert\sec t +\tan t\vert +C
$$
$$
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\ln\vert\sec x +\tan x\vert +C
$$
例22
\int\frac{dx}{\sqrt{x^2+a^2}} (a>0)
解:
x=a\tan t
\Rightarrow
dx = a\sec^2 dt
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\int\frac{a\sec^2 t dt}{\sqrt{a^2\tan^2 t+a^2}}=
\int\frac{\sec^2 t dt}{\sqrt{\tan^2 t+1}}=
\int\frac{\sec^2 t dt}{\sec t}
=\int\sec t dt = \ln\vert\sec t +\tan t\vert +C
\Rightarrow
\int\frac{dx}{\sqrt{x^2+a^2}}=
\ln\vert\sec x +\tan x\vert +C
本文章使用limfx的vscode插件快速发布