用markdown写数学习题


实验

红色

​红色的积分号

<font color="#dd0000">$\int$红色的积分号</font>


第四章


总复习题四


1.

(1)

解:


(2) .

\int \frac{x+5}{x^2-6x+13}dx = \int \frac{x+5}{(x-3)^2+4}dx = 
\frac{1}{4}\int\frac{x+5}{1+(\frac{x-3}{2})^2}dx = 
\frac{2}{4}\int \frac{d\frac{(x-3)}{2}}{1+(\frac{x-3}{2})^2} = 
\frac{1}{2}\arctan \frac{x-3}{2}+C


4.

(1) ;

解:

\int\frac{dx}{e^x-e^{-x}}= 
\int\frac{e^x dx}{e^{2x}-1}= 
\int\frac{de^x}{(e^{x})^2-1}=
\int\frac{de^x}{e^x-1}-\int\frac{de^x}{e^x+1}=
\int\frac{d(e^x-1)}{e^x-1}-\int\frac{d(e^x+1)}{e^x+1}=
=\ln |e^x-1|-\ln |e^x+1|+C=
\ln|\frac{e^x-1}{e^x+1}|+C

(2)

解:

\int\frac{x}{(1-x)^3}dx=
-\int\frac{1-x-1}{(1-x)^3}dx=
-\int\frac{1}{(1-x)^2}dx+\int\frac{1}{(1-x)^3}dx=
\int (1-x)^{-2}d(1-x)+\int (1-x)^{-3}d(1-x)
=\frac{1}{-2+1}(1-x)^{-2+1}+\frac{1}{-3+1}(1-x)^{-3+1}+C=
\frac{-1}{1-x}+\frac{-\frac{1}{2}}{(1-x)^2}

markdown源码



---

## 第四章

---

### *总复习题四*

---

**1.**

(1) $\int x^3 e^x dx =$ $\underline{    }$.

**解:**

$\int x^3 e^x dx = \int x^3 d(e^x) = e^x x^3-\int e^xd(x^3) = e^x x^3-3\int e^x x^2dx$

$\int e^x x^2dx=\int x^2d(e^x)=e^x x^2-\int e^xd(x^2)=e^x x^2-2\int e^x xdx$

$\int e^x xdx = \int xd(e^x) = e^x x-\int e^x dx=e^x x-e^x+C$

$\Rightarrow \int x^3 e^xdx = e^x x^3-3[e^x x^2-2(e^x x-e^x)]+C =$ <font color="#dd00dd">$\underline{e^x x^3-3e^x x^2+6e^x x-6e^x+C}$</font>

---

(2) $\int \frac{x+5}{x^2-6x+13}=$  $\underline{      }$.

**解**:
$$
\int \frac{x+5}{x^2-6x+13}dx = \int \frac{x+5}{(x-3)^2+4}dx = 
\frac{1}{4}\int\frac{x+5}{1+(\frac{x-3}{2})^2}dx = 
\frac{2}{4}\int \frac{d\frac{(x-3)}{2}}{1+(\frac{x-3}{2})^2} = 
\frac{1}{2}\arctan \frac{x-3}{2}+C
$$
$\Rightarrow \int \frac{x+5}{x^2-6x+13}dx =$ <font color="#dd00dd"> $\underline{\frac{1}{2}\arctan \frac{x-3}{2}+C}$</font>

---

**4**.

(1)$\int \frac{dx}{e^x-e^{-x}}$ ;

**解:**
$$
\int\frac{dx}{e^x-e^{-x}}= 
\int\frac{e^x dx}{e^{2x}-1}= 
\int\frac{de^x}{(e^{x})^2-1}=
\int\frac{de^x}{e^x-1}-\int\frac{de^x}{e^x+1}=
\int\frac{d(e^x-1)}{e^x-1}-\int\frac{d(e^x+1)}{e^x+1}=
$$

$$
=\ln |e^x-1|-\ln |e^x+1|+C=
\ln|\frac{e^x-1}{e^x+1}|+C
$$

---

(2)$\int\frac{x}{(1-x)^3}dx$

**解:**
$$
\int\frac{x}{(1-x)^3}dx=
-\int\frac{1-x-1}{(1-x)^3}dx=
-\int\frac{1}{(1-x)^2}dx+\int\frac{1}{(1-x)^3}dx=
\int (1-x)^{-2}d(1-x)+\int (1-x)^{-3}d(1-x)
$$

$$
=\frac{1}{-2+1}(1-x)^{-2+1}+\frac{1}{-3+1}(1-x)^{-3+1}+C=
\frac{-1}{1-x}+\frac{-\frac{1}{2}}{(1-x)^2}
$$

本文章使用limfx的vscode插件快速发布