第二章 均匀物质的热力学性质

§ 2.1 内能、焓、自由能和吉布斯函数的全微分

上一章中有的热力学方程

\begin{aligned}
\mathrm dU &= T\mathrm dS - p\mathrm dV\\
\mathrm dH &= \mathrm dU + \mathrm d(pV) = T\mathrm dS + V\mathrm dp\\
\mathrm dF &= \mathrm dU - \mathrm d(TS) = -S\mathrm dT - p\mathrm dV\\
\mathrm dG &= \mathrm dF + \mathrm d(pV) = -S\mathrm dT + V\mathrm dp
\end{aligned}
  • 第一个式子把 看成 的函数, 可以得到
\left(\frac{\partial U}{\partial S}\right)_V = T, \ \left(\frac{\partial U}{\partial V}\right)_S = -p\\ \ \\
\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V \tag{2. 1}
  • 第二个式子把 看成 的函数, 可以得到
\left(\frac{\partial H}{\partial S}\right)_p = T, \ \left(\frac{\partial H}{\partial V}\right)_S = V\\ \ \\
\left(\frac{\partial T}{\partial p}\right)_S = \left(\frac{\partial V}{\partial S}\right)_p \tag{2. 2}
  • 第三个式子把 看成 的函数, 可以得到
\left(\frac{\partial F}{\partial T}\right)_V = -S, \ \left(\frac{\partial F}{\partial V}\right)_T = -p\\ \ \\
\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V \tag{2. 3}
  • 第四个式子把 看成 的函数, 可以得到
\left(\frac{\partial G}{\partial T}\right)_p = -S, \ \left(\frac{\partial G}{\partial p}\right)_T = V\\ \ \\
\left(\frac{\partial S}{\partial p}\right)_T = \left(\frac{\partial V}{\partial T}\right)_p \tag{2. 4}
  • 习题 2. 1

§ 2.2 麦克斯韦关系的简单应用

(2. 1)-(2. 4)称为麦克斯韦关系. 麦克斯韦关系是 四个变量之间的偏导关系.

利用麦克斯韦关系, 可以把一些不能直接通过实验测量的物理量以物态方程和热容等可以直接通过实验测量的物理量表达出来.

  1. 为状态参量, 内能 全微分为
\begin{aligned}
\mathrm dU &= \left(\frac{\partial U}{\partial T}\right)_V\mathrm dT + \left(\frac{\partial U}{\partial V}\right)_T \mathrm dV\\
\mathrm dU &= T\mathrm dS - p\mathrm dV = T\left[\left(\frac{\partial S}{\partial T}\right)_V\mathrm dT + \left(\frac{\partial S}{\partial V}\right)_T \mathrm dV\right] - p\mathrm dV\\
&= T\left(\frac{\partial S}{\partial T}\right)_V\mathrm dT + \left[T\left(\frac{\partial S}{\partial V}\right)_T- p\right]\mathrm dV
\end{aligned}

所以可以得到

C_V = \left(\frac{\partial U}{\partial T}\right)_V = T\left(\frac{\partial S}{\partial T}\right)_V\quad \textrm{定容热容的另一表达式}\\ \ \\
\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T- p = T\left(\frac{\partial p}{\partial T}\right)_V - p\\ \ \\ \textrm{温度保持不变时内能随体积的变化率与物态方程的关系}
  • 习题 2. 2
  • 对于理想气体, , 即
\left(\frac{\partial U_m}{\partial V_m}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_{V_m} - p = T\frac{R}{V_m} - p = 0

内能不变, 焦耳定律.

  • 对于范德瓦尔斯气体,
\left(\frac{\partial U_m}{\partial V_m}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_{V_m} - p = T\frac{R}{V_m-b} - p = \frac{a}{V_m^2}
  1. 为状态参量, 焓 全微分为
\begin{aligned}
\mathrm dH &= \left(\frac{\partial H}{\partial T}\right)_p\mathrm dT + \left(\frac{\partial H}{\partial p}\right)_T \mathrm dp\\
\mathrm dH &= T\mathrm dS + V\mathrm dp = T\left[\left(\frac{\partial S}{\partial T}\right)_p\mathrm dT + \left(\frac{\partial S}{\partial p}\right)_T \mathrm dp\right] + V\mathrm dp\\
&= T\left(\frac{\partial S}{\partial T}\right)_p\mathrm dT + \left[T\left(\frac{\partial S}{\partial p}\right)_T + V\right]\mathrm dp
\end{aligned}

所以可以得到

C_p = \left(\frac{\partial H}{\partial T}\right)_p = T\left(\frac{\partial S}{\partial T}\right)_p\quad \textrm{定压热容的另一表达式}\\ \ \\
\left(\frac{\partial H}{\partial p}\right)_T = T\left(\frac{\partial S}{\partial p}\right)_T + V = -T\left(\frac{\partial V}{\partial T}\right)_p + V\\ \ \\ \textrm{温度保持不变时焓随压强的变化率与物态方程的关系}
  1. 计算定压热容和定容热容的关系
C_p-C_V = T\left(\frac{\partial S}{\partial T}\right)_p - T\left(\frac{\partial S}{\partial T}\right)_V

看成 的函数 , 则熵可以写成 , 对温度的变化包含两部分, 一部分是 中显含 的变化 , 另外一部分是 中隐含的 的变化

\left(\frac{\partial S}{\partial T}\right)_p = \left(\frac{\partial S}{\partial T}\right)_V + \left(\frac{\partial S}{\partial V}\right)_T\left(\frac{\partial V}{\partial T}\right)_p

所以可以得到

  • 对于理想气体
C_p-C_V = nR
  • 对于任意的简单系统, 可以得到
C_p-C_V = T\beta p \alpha V = \alpha\beta pVT = \frac{VT\alpha^2}{\kappa_T}

例 2.2. 1 求证:绝热压缩系数 与等温压缩系数 之比等于定容热容与定压热容之比.

证明:

\kappa_S = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_S\\ \ \\
\kappa_T = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_T\\ \ \\
\frac{\kappa_S}{\kappa_T} = \dfrac{\left(\dfrac{\partial V}{\partial p}\right)_S}{\left(\dfrac{\partial V}{\partial p}\right)_T} = \frac{\dfrac{\partial(V, S)}{\partial(p, S)}}{\dfrac{\partial(V, T)}{\partial(p, T)}}=\dfrac{\dfrac{\partial(V, S)}{\partial(V, T)}}{\dfrac{\partial(p, S)}{\partial(p, T)}}= \dfrac{\left(\dfrac{\partial S}{\partial T}\right)_V}{\left(\dfrac{\partial S}{\partial T}\right)_p} = \frac{C_V}{C_p}\\ \ \\

例2. 2. 2 求证:

C_p-C_V = -T\dfrac{\left(\dfrac{\partial p}{\partial T}\right)_V^2}{\left(\dfrac{\partial p}{\partial V}\right)_T}

证明:

C_p = T\left(\frac{\partial S}{\partial T}\right)_p = T\frac{\partial(S, p)}{\partial(T, p)} = T\frac{\dfrac{\partial(S, p)}{\partial(T, V)}}{\dfrac{\partial(T, p)}{\partial(T, V)}} = T\frac{\left(\dfrac{\partial S}{\partial T}\right)_V\left(\dfrac{\partial p}{\partial V}\right)_T-\left(\dfrac{\partial p}{\partial T}\right)_V\left(\dfrac{\partial S}{\partial V}\right)_T}{\left(\dfrac{\partial p}{\partial V}\right)_T}\\ \ \\
=C_V - T\left(\dfrac{\partial p}{\partial T}\right)_V^2\\ \ \\

上面两个例题做了些什么?我们通过麦克斯韦关系把一些不能直接通过实验测量的物理量用物态方程和热容表示出来了.

§ 2.3 气体的节流过程和绝热膨胀过程

  1. 在热力学中, 往往用偏导数描述一个物理效应.
    • 可逆绝热过程中温度随压强的变化率,
    • 绝热自由膨胀过程中温度随体积的变化率,
  2. 某一效应的变化率, 可以将描述该效应的偏导数用 表示出来, 或者求出描述该效应的偏导数与描述另一效应的偏导数之间的关系.

获得低温的两种方法

  1. 节流(有节制的流动)过程, 在节流过程前后, 气体的温度发生了变化. 该效应称为焦耳-汤姆孙效应, 简称焦汤效应.
U_2-U_1=p_1V_1-p_2V_2\\ \ \\
U_2+p_2V_2=U_1+p_1V_1\\ \ \\
H_2=H_1

节流过程是一个焓不变过程. 定义焓不变的条件下气体温度陏压强的变化率为焦汤系数 , 制冷, 制温. 取 , 有

\left(\frac{\partial T}{\partial p}\right)_H\left(\frac{\partial H}{\partial T}\right)_p\left(\frac{\partial p}{\partial H}\right)_T = -1\\ \ \\
\mu = -\frac{\left(\dfrac{\partial H}{\partial p}\right)_T}{\left(\dfrac{\partial H}{\partial T}\right)_p}=-\frac{V-T{\left(\dfrac{\partial V}{\partial T}\right)_p}}{C_p} = \frac{V}{C_p}(T\alpha-1)
  • 理想气体 理想气体在节流过程前后温度不变.
  • 实际气体若 , 若
  • 对应于 图上的一条曲线, 称为反转曲线. 反转曲线给出使 的温度称为反转温度. 昂内斯方程
p=\frac{nRT}{V}\left[1+\frac{n}{V}B(T)\right]\approx\frac{nRT}{V}\left[1+\frac{p}{RT}B(T)\right]\\ \ \\
V=n\left[\frac{RT}{p}+B(T)\right]\\ \ \\
\alpha = \frac{1}{V}\left(\dfrac{\partial V}{\partial T}\right)_p = \frac{n}{V}\left[\frac{R}{p}+\frac{\mathrm dB(T)}{\mathrm dT}\right]\\ \ \\
\mu = \frac{V}{C_p}\left[T\frac{n}{V}\left(\frac{R}{p}+\frac{\mathrm dB}{\mathrm dT}\right)-1\right] = \frac{1}{C_p}\left[\frac{nRT}{p}+nT\frac{\mathrm dB}{\mathrm dT}-n\left(\frac{RT}{p}+B\right)\right] =\frac{n}{C_p}\left(T\frac{\mathrm dB}{\mathrm dT}-B\right)
  1. 绝热膨胀, 近似准静态, 熵不变.
\mathrm dS = \left(\frac{\partial S}{\partial T}\right)_p\mathrm dT + \left(\frac{\partial S}{\partial p}\right)_T\mathrm dp = C_p\frac{\mathrm dT}{T} - \left(\frac{\partial V}{\partial T}\right)_p\mathrm dp = C_p\frac{\mathrm dT}{T} - V\alpha\mathrm dp = 0\\ \ \\
\left(\frac{\partial T}{\partial p}\right)_S = \frac{\mathrm dT}{\mathrm dp} = \frac{VT\alpha}{C_p} > 0

气体在绝热膨胀过程中减少其内能而对外做功, 膨胀后气体分子间的平均距离增大, 吸力的影响减弱而使分子间的相互作用能有所增加. 内能减少, 相互作用能又增加, 分子的平均动能必然减少, 因而气体的温度下降.

§ 2.4 基本热力学函数的确定

  1. 为状态参量, 物态方程为
\mathrm dU = C_V\mathrm dT + \left[T\left(\frac{\partial p}{\partial T}\right)_V - p\right]\mathrm dV\\ \ \\
U = \int\left\{C_V\mathrm dT + \left[T\left(\frac{\partial p}{\partial T}\right)_V - p\right]\mathrm dV\right\} + U_0\\ \ \\
\mathrm dS = \frac{C_V}{T}\mathrm dT + \left(\frac{\partial p}{\partial T}\right)_V\mathrm dV\\ \ \\
S = \int\left[\frac{C_V}{T}\mathrm dT + \left(\frac{\partial p}{\partial T}\right)_V\mathrm dV\right] + S_0
  1. 为状态参量, 物态方程为
\mathrm dH = C_p\mathrm dT + \left[V - T\left(\frac{\partial V}{\partial T}\right)_V\right]\mathrm dp\\ \ \\
H = \int\left\{C_p\mathrm dT + \left[V - T\left(\frac{\partial V}{\partial T}\right)_V\right]\mathrm dp\right\} + H_0\\ \ \\
\mathrm dS = \frac{C_p}{T}\mathrm dT - \left(\frac{\partial V}{\partial T}\right)_p\mathrm dp\\ \ \\
S = \int\left[\frac{C_p}{T}\mathrm dT - \left(\frac{\partial V}{\partial T}\right)_p\mathrm dp\right] + S_0

例 2.4.1 以 为状态参量, 求理想气体的焓、熵和吉布斯函数.

解: 理想气体状态方程 , 为一常量, , 带入可以得到

H_m = \int C_{p, m}\mathrm dT + H_{m, 0} = C_{p, m}T + H_{m, 0}\\ \ \\
S_m = \int\left(\frac{C_p}{T}\mathrm dT - \frac{R}{p}\mathrm dp\right) + S_{m, 0} = C_{p. m}\ln T - R\ln p + S_{m, 0}\\ \ \\
\begin{aligned}
G_m &= H_m - TS_m = \int C_{p, m}\mathrm dT - T\int\frac{C_{p, m}}{T}\mathrm dT + RT\ln p + H_{m, 0} - TS_{m, 0}\\
&= C_{p, m}T - C_{p, m}T\ln T + RT\ln p + H_{m, 0} - TS_{m, 0}
\end{aligned}

对吉布斯自由能, 取 , 有 , 即

\int \frac{1}{T}\mathrm d\int C_{p, m}\mathrm dT = \frac{1}{T}\int C_{p, m}\mathrm dT - \int\mathrm d\frac{1}{T} \int C_{p, m}\mathrm dT \\ \ \\
\int \frac{1}{T}C_{p, m}\mathrm dT = \frac{1}{T}\int C_{p, m}\mathrm dT + \int \frac{\mathrm dT}{T^2}\int C_{p, m}\mathrm dT \\ \ \\
\begin{aligned}
G_m & = - T\int\frac{\mathrm dT}{T^2}\int C_{p, m}\mathrm dT + RT\ln p + H_{m, 0} - TS_{m, 0}\\
& = RT\left(-\int\frac{\mathrm dT}{RT^2}\int C_{p, m}\mathrm dT + \ln p + \frac{H_{m, 0}}{RT} - \frac{S_{m, 0}}{R}\right)\\
& = RT(\varphi + \ln p)
\end{aligned}

其中 是温度的函数.

例 2.4.2 求范德瓦耳斯气体的内能和熵.

解: 1 mol 范德瓦耳斯气体的物态方程为

\left( p + \frac{a}{V_m^2} \right)(V_m - b) = RT\\ \ \\
\left(\frac{\partial p}{\partial T}\right)_{V_m} = \frac{R}{V_m - b}, \quad T\left(\frac{\partial p}{\partial T}\right)_{V_m} - p = \frac{a}{V_m^2}\\ \ \\
U_m = \int\left(C_{V, m}\mathrm dT + \frac{a}{V_m^2}\mathrm dV\right) + U_0 = \int C_{V, m}\mathrm dT - \frac{a}{V_m} + U_{m, 0}\\ \ \\
S_m = \int\left(\frac{C_V}{T}\mathrm dT + \frac{R}{V_m - b}\mathrm dV\right) + S_{m, 0} = \int\frac{C_V}{T}\mathrm dT + R\ln(V_m - b) + S_{m, 0}\\ \ \\ 

例 2.4.3 简单固体的物态方程为 , 试求其内能和熵.

解: 令 , 所以 . 则有 , 所以

\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{\alpha}{\kappa_T}\\ \ \\
T\left(\frac{\partial p}{\partial T}\right)_{V} - p = \frac{V-V_1}{\kappa_T V_0}\\ \ \\
U = \int\left(C_V\mathrm dT + \frac{V-V_1}{\kappa_T V_0}\mathrm dV\right) + U_0 = \int C_V\mathrm dT + \frac{(V-V_1)^2}{2\kappa_T V_0} + U_0 \\ \ \\
S = \int\frac{C_V}{T}\mathrm dT + \frac{\alpha V}{\kappa_T} + S_0\\ \ \\

§ 2.5 特性函数

马休(Massieu)在1869 年证明, 如果适当选择独立变量(称为自然变量), 只要知道一个热力学函数, 就可以通过求偏导数而求得均匀系统的全部热力学两数, 从而把均匀系统的平衡性质完全确定. 这个已知的热力学函数称为特性函数, 表征均匀系统的特性的.

特征函数 热力学变量

在应用上, 最重要的特性函数是自由能和吉布斯函数.

  1. , 因此
S = - \left(\frac{\partial F}{\partial T}\right)_V, \quad p = - \left(\frac{\partial F}{\partial V}\right)_T\\ \ \\
U = F + TS = F - T\left(\frac{\partial F}{\partial T}\right)_V, \textrm{吉布斯-亥姆霍兹(Gibbs-Helmholtz)方程. }\\ \ \\
H = U + pV = F - T\left(\frac{\partial F}{\partial T}\right)_V - V\left(\frac{\partial F}{\partial V}\right)_T\\ \ \\
G = F + pV = F - V\left(\frac{\partial F}{\partial V}\right)_T
  1. , 因此
S = - \left(\frac{\partial G}{\partial T}\right)_p, \quad V = \left(\frac{\partial G}{\partial p}\right)_T\\ \ \\
U = G + TS - pV = G - T\left(\frac{\partial G}{\partial T}\right)_p - p\left(\frac{\partial G}{\partial p}\right)_T\\ \ \\
H = G + TS = G - T\left(\frac{\partial G}{\partial T}\right)_p\textrm{吉布斯-亥姆霍兹(Gibbs-Helmholtz)方程. }\\ \ \\
F = G - pV = G - p\left(\frac{\partial G}{\partial p}\right)_T

§ 2.6 热辐射的热力学理论

  1. 受热的固体会辐射电磁波, 称为热辐射.
  2. 热辐射的强度、强度按频率的分布与辐射体的温度、性质都有关.
  3. 如果辐射体对电磁波的吸收和辐射达到平衡, 热辐射的特性将只取决于温度, 与辐射体的其他特性无关, 称为平衡辐射.
  4. 平衡辐射: 黑体辐射.
  5. 窖内平衡辐射是空间均匀和各向同性的. 它的内能密度和内能密度按频率的分布只取决于温度, 与空窖的其他特性无关.

辐射压强 与辐射能量密度 之间的关系

p=\frac{1}{3}u

显然, 空间均匀的空窖辐射内能可以写成 , 用 作为状态参量. 利用

\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p \\ \ \\
u = T\left(\frac{\partial p}{\partial T}\right)_V - \frac{1}{3}u = \frac{T}{3}\frac{\mathrm du}{\mathrm d T} - \frac{1}{3}u\\ \ \\
\frac{\mathrm d u}{u} = 4\frac{\mathrm d T}{T}\\ \ \\
u = aT^4

所以空窖辐射的内能为 .

\mathrm dS = \frac{\mathrm dU + p\mathrm dV}{T} = \frac{aT^4\mathrm dV + 4aT^3V\mathrm dT + \frac{1}{3}aT^4\mathrm dV}{T} = \frac{4}{3}aT^3\mathrm dV + 4aT^2V\mathrm dT = \frac{4}{3}a\mathrm d(VT^3)\\ \ \\
S = \frac{4}{3}aVT^3 + S_0 = \frac{4}{3}aVT^3

在可逆绝热过程中辐射场的熵不变, 这时有 为常量.

F = U - TS = aT^4V - \frac{4}{3}aVT^4 = -\frac{1}{3}aVT^4 = -\frac{1}{3}U\\ \ \\
G = F + pV = -\frac{1}{3}aVT^4 + \frac{1}{3}aVT^4 = 0
  1. 单位时间内通过小孔单位面积向一侧辐射的辐射能量, 称为辐射通量密度 .
J_u\mathrm dA = \frac{cu\mathrm dA}{4\pi}\int \cos\theta\mathrm d\Omega = \frac{1}{4}cu\mathrm dA\\ \ \\
J_u = \frac{1}{4}caT^4 = \frac{1}{4}\sigma T^4

斯特藩-玻耳兹曼定律. 斯特藩常量

  1. 物质对各种频率电磁波的发射特性和吸收特性必然有某种联系. 某一频率范围发射较强, 吸收也必然较强.
  • 表示被物体吸收的百分比, 称为物体对频率在 附近的辐射能量的吸收因数. 单位时间内被物体的单位面积所吸收、频率在 范围的辐射能量为
  • 表示单位时间内从物体的单位面积发射、频率在 范围的辐射能量. 称为物体对频率在 附近的电磁波的面辐射强度.
e_{\omega}\mathrm d\omega = \frac{1}{4}\alpha_{\omega}cu(\omega, T)\mathrm d\omega\\ \ \\
\frac{e_{\omega}}{\alpha_{\omega}} = \frac{1}{4}cu(\omega, T)\quad\textrm{基尔霍夫(Kirchhoff)定律}

吸收因数等于 1 的物体称为绝对黑体, 它把投射到其表面的任何频率的电磁波完全吸收. 绝对黑体是最好的吸收体, 也是最好的辐射体.

e_{\omega} = \frac{1}{4}cu(\omega, T)

§ 2.7 磁介质的热力学

{\hspace{0. 1em} \bar{} \hspace{-0. 4em} \mathrm d}W=V\mathrm d\left(\dfrac{\mu_0\mathscr H^2}{2}\right)+\mu_0V\mathscr H\mathrm d \mathscr M

第一项是激发磁场所做的功, 第二项是使介质磁化所做的功. 当热力学系统只包括介质而不包括磁场时,

{\hspace{0. 1em} \bar{} \hspace{-0. 4em} \mathrm d}W = \mu_0\mathscr H\mathrm d\mathfrak{m}

介质的总磁矩. 介质是均匀磁化的. 忽略磁介质的体积变化

\mathrm dU = T\mathrm dS + \mu_0\mathscr H\mathrm d\mathfrak{m}\\ \ \\
p\rightarrow-\mu_0\mathscr H, \quad V\rightarrow\mathfrak{m}

这样其它三个热力学函数为

\mathrm dH = T\mathrm dS + \mu_0\mathfrak{m}\mathrm d\mathscr H\\ \ \\
\mathrm dF = -S\mathrm dT + \mu_0\mathscr H\mathrm d\mathfrak{m}\\ \ \\
\mathrm dG = -S\mathrm dT - \mu_0\mathfrak{m}\mathrm d\mathscr H

一个麦克斯韦关系式

\left(\frac{\partial S}{\partial \mathscr H}\right)_T = \mu_0\left(\frac{\partial \mathfrak{m}}{\partial T}\right)_{\mathscr H}

利用 , 可以得到

\left(\frac{\partial S}{\partial \mathscr H}\right)_T\left(\frac{\partial \mathscr H}{\partial T}\right)_S\left(\frac{\partial T}{\partial S}\right)_{\mathscr H}=-1\\ \ \\
\left(\frac{\partial T}{\partial \mathscr H}\right)_S = -\left(\frac{\partial S}{\partial \mathscr H}\right)_T\left(\frac{\partial T}{\partial S}\right)_{\mathscr H} = -\mu_0\left(\frac{\partial \mathfrak{m}}{\partial T}\right)_{\mathscr H}\left(\frac{\partial T}{\partial S}\right)_{\mathscr H}

在磁场不变时, 磁介质的热容 为, 类比 .

C_{\mathscr H} = T\left(\frac{\partial S}{\partial T}\right)_{\mathscr H}\\ \ \\
\left(\frac{\partial T}{\partial \mathscr H}\right)_S = -\frac{\mu_0T}{C_{\mathscr H}}\left(\frac{\partial \mathfrak{m}}{\partial T}\right)_{\mathscr H}

假设磁介质遵从居里定律(状态方程) ,

\left(\frac{\partial T}{\partial \mathscr H}\right)_S = \frac{\mu_0}{C_{\mathscr H}}\frac{CV}{T}\mathscr H > 0

在绝热条件下减小磁场时, 磁介质的温度将降低. 这个效应称为绝热去磁制冷效应, 是获得 1K 以下低温的有效方法.

  • 分子内能来自于热运动, 外加磁场时, 分子规则排列, 能量较低. 减小磁场时, 分子排列有序程度降低, 能量会升高. 由于是绝热过程, 这些能量来自于分子热运动, 也就是分子的内能, 所以温度降低.

考虑到磁介质体积变化, 则有

\mathrm dU = T\mathrm dS + \mu_0\mathscr H\mathrm d\mathfrak{m} - p\mathrm dV\\ \ \\
\mathrm dG = -S\mathrm dT - \mu_0\mathfrak{m}\mathrm d\mathscr H + V\mathrm dp\\ \ \\
\left(\frac{\partial V}{\partial \mathscr H}\right)_{T, p} = -\mu_0\left(\frac{\partial \mathfrak{m}}{\partial p}\right)_{T, \mathscr H}

左边是在温度和压强保持不变时体积随磁场的变化率, 它描述磁致伸缩效应; 右方给出在温度和磁场保持不变时介质磁矩随压强的变化率, 它描述压磁效应. 该关系给出了磁致伸缩效应与压磁效应的关系.

§ 2.8 获得低温的方法


本文章使用limfx的vscode插件快速发布