吸波蜂窝结构模拟的研究进展

摘要

吸波材料在人类的生产生活和军事运用的领域表现出了非凡的重要性。得益于在力学、电磁学上的独特优势, 吸波蜂窝结构在吸波材料领域有着广泛的运用。本文综合评述了吸波蜂窝结构模拟的研究进展, 介绍了对于吸波蜂窝吸波性能进行模拟的两种方法, 最后, 对吸波蜂窝结构模拟目前面临的挑战进行了总结,并对该领域未来的发展方向进行了展望

自从电磁波及其物理特性被发现以来,电磁波就一直作为人类文明不可或缺的工具为人类所使用着。特别是自信息化时代以来,人类对于电磁波的开发和使用飞速发展。然而,与日俱增的电磁微波辐射也对工业生产生活,人类身体健康,乃至国防安全带来了新的挑战[1-3]。同时,在军事领域,吸波材料对于新式飞机越发重要。在雷达-隐身飞机的不断对抗中,雷达逐渐往低频段发展,而现有的吸波材料的吸波带宽较窄,因此制备宽吸波带宽,高吸波性能的吸波材料日趋重要[4-8]。而在制备高性能吸波材料时,对于吸波材料的理论模型设计以及对其进行吸波性能的模拟是降低设计成本,缩短设计时间的重要手段。

1991年,Jorgenson等提出了一种基于矩量法计算反射系数的方法。在此基础上,2003年,高正平等人借助于周期格林函数对无限大蜂窝表面建立了电场积分方程,用矩量法求解未知的表面电流。在8~12GHz频段内,得到的不同蜂窝高度、不同吸收剂和不同浸渍厚度的数值结果表明,所提出的方法是高效的,可用于蜂窝制备和吸波结构的工作中。[11,12,13]2005 年, M. Johnson等人提出了一种称为 Hashin-Shtrikman 的数学模型。这一数学模型描述了吸波蜂窝的电磁参数与吸波材料的电磁参数以及蜂窝的结构参数之间的关系,为吸波蜂窝的结构设计提供了理论指导。[9,10]

本文综合评述了吸波蜂窝结构模拟的研究进展,介绍了吸波蜂窝结构得到RCS的计算机模拟手段

建模方法

在对吸波蜂窝结构模拟中,通常需要得到有限大目标的RCS。为此,运用建模的思想十分常见。而对于吸波蜂窝这种复杂的目标进行建模时通常有精确建模方法和等效建模方法两种手段。

精确建模方法

矩量法

矩量法(MoM)是一种用于求解电磁场问题的强大的数值技术[14],然而,基于表面积分方程(SIE),MoM在分析大型结构式面临着由于计算复杂性和存储器要求的技术限制。由此导致了对克服这些问题的各种方法的研究。[21]

Chunbang Wu等提出了一种多级快速多极的加速技术算法(MLFMA)和CM方法的并行方案用于处理自由空间中的大尺度有限周期和准周期结构[15];Shashwat Sharma等提出的扩展AIM(AIMx)中,SIE算子被分解为包含核奇异性的频率无关项和非奇异频率相关项。直接积分只需要用于与频率无关的项,并且可以在每个频率重复使用,从而显著加快频率扫描[16];Ö. Ergül等采用Rao-Wilton-Glisson函数对电流和磁场组合场积分方程(JMCFIE)离散化得到的稠密矩阵方程进行迭代求解,其中采用多级快速多极算法有效地进行了矩阵向量乘法运算。由于非对角矩阵分区的数值不平衡性,随着对比度的增加,JMCFIE的求解变得困难。由此,Ö. Ergül等提出了一个四分区块对角预处理器(4PBDP),它通过显著减少迭代次数来提供JMCFIE的有效解决方案。4PBDP是有效的,尤其是当对比度增加,并且标准块对角预处理器不能提供快速收敛时[17];穿透体的电磁散射通常由Poggio-Miller Chan Harrington Wu Tsai(PMCHWT)积分方程建模。不幸的是,这个方程中涉及的算子的谱既不是从上到下都有界的。这意味着方程受到密集离散化分解的影响;也就是说,在离散化方程时得到的矩阵的条件数随着网格密度的增加而增加。电场积分方程通常用于模拟完美导电体的散射,也容易出现类似的击穿现象。由此,K. Cools等引入了一个Calderón预条件PMCHWT积分方程。通过构造PMCHWT算子的Calderón恒等式,表明新方程不受密集离散化击穿的影响。介绍了一种包含Rao-Wilton-Glisson和Buffa-Christiansen函数的一致离散化方案。该方案相当于将乘法矩阵预处理器应用于经典的PMCHWT系统,因此与现有的边界元码和加速方案兼容[18];Z. Peng等介绍了一种新的积分方程域分解方法(DDM),用于非穿透物体电磁波散射的IE解。所提出的方法是一种非重叠/非共形DDM,它为IE矩阵方程提供了一个计算高效的预处理器[19];L. F. Wu等提出了一种基于体积表面积分方程的自适应分段归约基方法(VSIE-ASRBM),用于快速分析电介质金属目标的宽带电磁散射[20];X. Wang等将子域自适应积分法(SAIM)与快速远场近似法(FAFFA)有效结合,提出了一种有效计算电磁散射问题的新方法[22];E,García等从特征基函数法获得的扩展域宏基函数来表示电流分布[23],他们将周期结构分为几个子域,在每个子域上生成主要特征基函数,并使用次要特征基函数来表示子域之间的耦合、降低阻抗矩阵的维数,从而提高计算效率。

为了实现准确的宽带频率响应 必须使用CBFM来计算周期性结构目标的每个频率点处的电流。然而,这个过程包括重复填充每个的阻抗矩阵频率点,导致显著的时间消耗[21]。为了克服这个问题,X. Wang等将自适应积分法(AIM)和物理光学(PO)与切比雪夫近似技术(CAT)相结合,提出了一种新的混合方法,通过在MoM和PO区域中使用快速傅立叶变换(FFT)加速矩阵向量乘法,实现了显著的速度增强,并采用CAT技术将未知电流系数扩展为切比雪夫级数以此实现快速扫频[24];X. D. Wang等引入了一种有效的谱域正入射和斜入射情况下的周期矩法公式来加速分析具有大量未知的频率选择表面(FSS)问题[25];M. A. M. Hassan针对一般电磁问题(AWE),提出了随机辅助源方法的渐近波形估计公式[26]。其中,AWE技术可以很容易地与像自适应积分法(AIM)和快速多极方法(FMM)剩余技术相结合[21]。Du Yan等完成了CBFM和AWE的组合[27],但使用二维的MoM只能用于计算无限长目标。A.M. Yao等和Z. Wang等提出组合超宽带特性的基础函数法(UCBFM),改进的超宽带特征基函数法(IUCBFM)和AWE;X. Wang等提出了结合特征基函数的混合方法[21]。

时域有限差分法

1966年,Yee提出了时域有限差分法。这是一种基于麦克斯韦方程的常被用于求解和分析电磁散射问题的有效的数值方法[30,31]。然而,Courant–Friedrich–Levy(CFL)稳定性条件对规则FDTD方法中精细结构的时间步长设置了限制[30]。为了消除这种限制,无条件稳定(US)方法被提出。M. Moradi等将2D的无条件稳定单场FDTD拓展到了三维[32];J. Feng等采用一步跳变交替方向隐式(ADI)-FTD方法来突破密集网格区域的CFL限制[33];H. H. Liu等针对CFL条件约束引起的阶跃误差,提出了一种三维共形局部一维FDTD(CLOD-FDTD)方法[34];L. Yan等使用加权拉盖尔多项式(WLP)格式来消除稳定性约束[35];S. H. Zhao等提出了一种通过消除通过求解系统矩阵的特征值问题而获得不稳定模态来实现无条件稳定性方法[36];

AH FDTD是一类基于正交基函数的新型US FDTD方法。实现了AH FDTD方法的并行有序求解方案。该方案用于实现3D AH FDTD方法,适用于建模 和分析集总参数。但它对散射问题的适用性仍然研究不足。[37-40]

Umashankar和Taflove提出了TF/SF方法来引入平面波,而Taflove等人提出了1D入射场阵列(IFA)方法。最近,Z.Y.Hang等提出了一种将平面波引入三维AH FDTD的方法来减少3D AH FDTD中将TF/SF边界上的所有电场和磁场转换为AH域展开系数时耗时较长的问题。[40-43]

等效建模

等效建模方法通过使用等效电磁参数等将蜂窝结构简化为均匀的平板结构,从而大大降低了蜂窝吸波结构建模的复杂度。其中最为主流的是使用等效电磁参数模型方法。

等效EM参数模型方法

等效电磁参数模型也是从有限元方法和时域有限差分法衍生而来。2005年,M. Johansson等利用有限元方法和HS理论计算了吸波蜂窝,发现HS的理论上界更适合于吸波蜂窝的等效参数[44]。1999年,F.C. Smith通过使用时域有限差分法计算蜂窝结构在三个相互正交的方向上的平面波照射下的反射系数和透射系数,获得了吸波蜂窝的等效电磁参数[45]。何燕飞等根据强扰动理论, 在长波长近似条件下推导出蜂窝结构吸波材料等效介电常数和等效磁导率的计算公式[46]。赵雨辰等基于强扰动理论,引入吸波蜂窝的色散特性,建立了吸波蜂窝的离散等效参数模型[47]。K.V. Alexander等提出了一种光学超材料的双各向同性均匀化方法,并讨论了验证这些纳米结构的有效参数的几种技术[48]。Z.F. Li等证明了另一种方法可以检索ω介质及其相应CMM的有效参数[49]。X.D. Chen等提出了一种从S参数的测量中检索由开口环谐振器组成的双各向同性超材料板的有效本构参数的方法[50]。最近,Chen, H.等提出了一种基于长波长近似的双轴各向异性HAM的EEP的闭合形式表示[51]。尽管近期对于等效电磁参数的探索较为萎靡,但其对于吸波蜂窝吸波性能的探讨起到了支柱性的作用。

其他类型建模

随着计算机科学的飞速进步,对于吸波蜂窝的建模也出现了新的建模方式。比如,S. He提出了一种基于模拟退火算法的多层吸波材料等效电磁参数反演方法[52];Y. -X. Zhang使用不同蜂窝结构的雷达散射截面和蜂窝的等效介电常数分别作为输入和输出变量来训练BP神经网络并求解均匀化后的散射问题等[53]。

总结与展望

对于电磁场的有效、快速的建模对于吸波蜂窝的设计与制备都极端重要。吸波蜂窝由于其独特的力学和电磁学性质,在吸波材料领域有着广泛的运用。本文列举了一些吸波蜂窝结构模拟时常用的建模手段。尽管目前已在精确建模方法的轻量化方面有了长足的进步,但其在分析大型结构时的计算复杂度和存储器需求方面的问题始终没有得到根本性的解决。而在等效建模手段方面,由于不同结构材料的等效参数可能存在较大差异,而导致普遍可用的等效参数仍然尚未出现。尽管如此,对于吸波蜂窝的等效电磁参数计算目前已经几近完成。并且,越来越多的等效电磁参数开始运用于精确建模方法中。

[1]Vertically implanting MoSe2 nanosheets on the RGO sheets towards excellent multi-band microwave absorption
Xiao-Ying Fu, Qi Zheng, Lin Li,Mao-Sheng Cao
[2]Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption
Qiancheng Zhang, Zuojuan Du, Mingming Hou, Zizhao Ding, Xiaozhong Huang, Ailiang Chen, Yutian Ma, Sujun Lu, Xiu-Zhi Tang
[3]A study on the microwave absorbing honeycomb core embedded with conductive periodic patterned surfaces for the effective dielectric constant
Sang Min Baek, Won Jun Lee, Sang Yong Kim, Seong Su Kim
[4]Study on Microwave Absorption Performance Enhancement of Metamaterial/Honeycomb Sandwich Composites in the Low Frequency Band
Songming Li, Hao Huang, Sibao Wu, Jiafu Wang, Haijun Lu, and Liying Xing
[5]Han, M.; Liang, D.; Deng, L. Fabrication and electromagnetic wave absorption properties of amorphous Fe79Si16B5 microwires. Appl. Phys. Lett. 2011, 99, 082503.
[6]Yin, P.; Deng, Y.; Zhang, L.; Li, N.; Feng, X.; Wang, J.; Zhang, Y. Facile synthesis and microwave absorption investigation of activated carbon@Fe3O4 composites in the low frequency band. RSC Adv. 2018, 8, 23048–23057.
[7]Lv, H.; Yang, Z.; Wang, P.L.; Ji, G.; Song, J.; Zheng, L.; Zeng, H.; Xu, Z.J. A Voltage-Boosting strategy enabling a Low-Frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.
[8]Jia, Z.R.; Lan, D.; Lin, K.J.; Qin, M.; Kou, K.C.; Wu, G.L.; Wu, H.J. Progress in low-frequency microwave absorbing materials. J. Mater. Sci. Mater. Electron. 2018, 29, 17122–17136.
[9]Johnson M, Holloway C L, Kuster E F. Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers [J]. IEEE Transactions on Antennas and Propagation, 2005, 53(2):728-736.
[10]电磁吸波体设计、应用及电磁参数提取方法的研究 沈 俊 奕
[11]平面波垂直入射浸渍吸收剂蜂窝的反射特性 高正平,罗清
[12]Jorgenson R E,Mittra R.Scattering from structured slabs having two—dimensional periodicity[J].IEEE Trans.Antenna and Propagation,1991,39(2):152—157
[13]Jorgenson R E,Epp L,Mittra R.Determination of natural basis function set on thick,structured slabs using prony’s method[J].IEEE trans on Antenna and Propagation,199l,39(8):1 240一1 243
[14]R. F. Harrington and J. L. Harrington, Field Computation by Moment Methods. Oxford, U.K.: Oxford Univ. Press, 1996.
[15]C. B. Wu, L. Guan, P. F. Gu, and R. S. Chen, “Application of parallel CM-MLFMA method to the analysis of array structures,” IEEE Trans. Antennas Propag., vol. 69, no. 9, pp. 6116–6121, Sep. 2021.
[16] S. Sharma and P. Triverio, “AIMx: An extended adaptive integral method for the fast electromagnetic modeling of complex structures,” IEEE Trans. Antennas Propag., vol. 69, no. 12, pp. 8603–8617, Dec. 2021.
[17]O. Erg ¨ ul and L. G ¨ urel, “Efficient solution of the electric and magnetic ¨ current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci., vol. 44,no. 6, pp. 1-15, Dec. 2009.
[18] K. Cools, F. P. Andriulli, and E. Michielssen, “A Calderon multiplicative preconditioner for the PMCHWT integral equation,” IEEE Trans.Antennas Propag., vol. 59, no. 12, pp. 4579-4587, Dec. 2011.
[19]Z. Peng, X. C. Wang, and J. F. Lee,“Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3328–3338, Sep. 2011.
[20] L. F. Wu, Y. W. Zhao, Q. M. Cai, Z. P. Zhang, and J. Hu, “An adaptive segmented reduced basis method for fast interpolating the wideband scattering of the dielectric–metallic targets,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 12, pp. 2235–2239, Dec. 2020.
[21]X. Wang, W. -Y. Wang, Y. Li, H. -R. Zhang, C. -H. Liu and Y. Liu, "Broadband RCS Acquisition by Finite Periodic Arrays Using the Characteristic Basis Function and Asymptotic Waveform Evaluation," in IEEE Antennas and Wireless Propagation Letters, doi: 10.1109/LAWP.2023.3330700.
[22]X. Wang, S. Zhang, Z. L. Liu, and C. F. Wang, “A SAIM-FAFFA method for efficient computation of electromagnetic scattering problems,” IEEE Trans. Antennas Propag., vol. 64, no. 12, pp. 5507–5512, Dec. 2016.
[23]E. Garc´ıa, C. Delgado, and F. Catedra, “Efficient iterative analysis technique of complex radome antennas based on the characteristic basis function method,” IEEE Trans. Antennas Propag., vol. 69, no. 9, pp.5881–5891, Sep. 2021.
[24] X. Wang, S. Zhang, H. Xue, S. X. Gong, and Z. L. Liu, “A Chebyshev approximation technique based on AIM-PO for wide-band analysis,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 93–97, 2016.
[25]X. D. Wang and D. H. Werner, “Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag., vol. 58, no. 1, pp. 122–131, Jan. 2010.
[26]M. A. M. Hassan and A. A. Kishk, “A combined asymptotic waveform evaluation and random auxiliary sources method for wideband solutions of general-purpose EM problems,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 4010–4021, Jun. 2019.
[27]Du Yan, Sun Yufa and Shao Yong, ”Fast analysis of wideband electromagnetic scattering from multi-objects based on characteristic basis function method,” 2008 8th International Symposium on Antennas, Propagation and EM Theory, Kunming, 2008, pp. 573-576, doi: 10.1109/ISAPE.2008.4735277.
[28]A.M. Yao, W. Wu, J. Hu and D.G. Fang, ”Combination of ultra-wide band characteristic basis function method and asymptotic waveform evaluation method in MoM solution,” 2013 Proceedings of the International Symposium on Antennas & Propagation, Nanjing, China, 2013, pp. 795-798.
[29] Z. Wang and W. Nie, ”Fast calculation of wideband RCS of objects by combining improved ultra-wide band characteristic basis function method and AWE technique,” 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 2016, pp. 1156-1159, doi: 10.1109/PIERS.2016.7734605.
[30]Kane Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, 1966.
[31]A. Taflove and M. E. Brodwin, “Numerical Solution of SteadyState Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equations,” IEEE Transactions on Microwave Theory and Techniques, vol. 23, no. 8, pp. 623–630, 1975.
[32] M. Moradi, V. Nayyeri, and O. M. Ramahi, “An Unconditionally Stable Single-Field Finite-Difference Time-Domain Method for the Solution of Maxwell Equations in Three Dimensions,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 3859–3868, 2020.
[33] J. Feng, M. Fang, G. Xie, K. Song, W. Chen, Z. Huang, and X. Wu, “An Efficient FDTD Method Based on Subgridding Technique and OneStep Leapfrog ADI-FDTD,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 4, pp. 375–378, 2023.
[34] H. H. Liu, X. Y. Zhao, X. H. Wang, S. C. Yang, and Z. Z. Chen, “An Unconditionally Stable Conformal LOD-FDTD Method for Curved PEC Objects and its Application to EMC Problems,” IEEE Transactions on Electromagnetic Compatibility, vol. 64, no. 3, pp. 827–839, 2022.
[35] L. Yan, X. C. Li, Y. F. Yang, and J. F. Mao, “An Unconditionally Stable 2-D Stochastic WLP-FDTD Method for Geometric Uncertainty in Superconducting Transmission Lines,” IEEE Transactions on Applied Superconductivity, vol. 32, no. 2, pp. 1–9, 2022.
[36] S. H. Zhao, B. Wei, X. B. He, and H. C. Deng, “2-D Hybrid Cylindrical FDTD Method With Unconditional Stability,” IEEE Microwave and Wireless Technology Letters, pp. 1–4, 2023.
[37]Z. Y. Huang, L. H. Shi, B. Chen, and Y. Zhou, “A New Unconditionally Stable Scheme for FDTD Method Using Associated Hermite Orthogonal Functions,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4804–4809, 2014.
[38] Z. Y. Huang, L. H. Shi, Y. Zhang, and B. Chen, “An Improved Paralleling-in-Order Solving Scheme for AH-FDTD Method Using Eigenvalue Transformation,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 5, pp. 2135–2140, 2015.
[39]Z. Y. Huang, L. H. Shi, and B. Chen, “The 3-D Unconditionally Stable Associated Hermite Finite-Difference Time-Domain Method,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 7, pp. 5534– 5543, 2020.
[40]Z. Y. Huang, F. Jiang, Z. A. Chen, S. B. Liu, "A 3D Total-Field/Scattered-Field Plane-Wave Source for the Unconditionally Stable Associated Hermite FDTD Method,"IEEE IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,pp. 1-5, 2023 [41]K. Umashankar and A. Taflove, “A Novel Method to Analyze Electromagnetic Scattering of Complex Objects,” IEEE Transactions on Electromagnetic Compatibility, vol. EMC-24, no. 4, pp. 397–405, 1982
[42]A. Taflove, S. C. Hagness, and M. Piket-May, “Computational Electromagnetics: The Finite-Difference Time-Domain Method - ScienceDirect,” The Electrical Engineering Handbook, pp. 629–670, 2005.
[43] Z. Y. Huang, L. H. Shi, Q. Si, and B. Chen, “Unconditionally Stable Associated Hermite FDTD With Plane Wave Incidence,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 938–941, 2016.
[44]M. Johansson, C.L. Holloway, E.F. Kuester, Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers. IEEE Trans. Antennas Propag. 53(2), 728–736 (2005)
[45]F.C. Smith, Effective permittivity of dielectric honeycombs. IEE Proc. Microw. Antennas Propag. 146(1), 55–59 (1999)
[46]蜂窝结构吸波材料等效电磁参数和吸波特性研究 何燕飞 龚荣洲 王 鲜 赵 强
[47]覆盖蜂窝吸波结构的有限大目标 RCS计算与优化 赵雨辰,刘江凡,宋忠国,席晓莉
[48]K.V. Alexander, J.D. Borneman, X.J. Ni, V.M. Shalaev, V.P. Drachev, Bianisotropic effective parameters of optical metamagnetics and negative-index materials. Proc. IEEE 99(10), 1691–1700 (2011)
[49]Z.F. Li, K. Aydin, E. Ozbay, Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions. Photonics Nanostruct. 10(3), 329–336 (2012)
[50]X.D. Chen, B.I. Wu, J.A. Kong, T.M. Grzegorczyk, Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 71(4), 046610 (2005)
[51]Chen, H., Shen, R., Li, F. et al. Equivalent electromagnetic parameters extraction method for graded honeycomb absorbing materials. Appl. Phys. B 127, 84 (2021).
[52]Song He, Tong Su, Ling He, Jinsong Chen and Liang Xia Inversion of Equivalent Electromagnetic Parameters of Multilayer Absorbing Materials Based on Simulated Annealing Algorithm, Journal of Physics: Conference Series 2447 (2023) 012006
[53]Y. -X. Zhang, X. -W. Yuan, M. -L. Yang and X. -Q. Sheng, "Equivalent Electromagnetic Parameter Inversion of Honeycomb Structures Based on BP Neural Network," 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 2022, pp. 1-3,


本文章使用limfx的vscode插件快速发布