如何衡量一个玩家/学生的真实战斗力/水平?
这篇文章将会带着您从一个光环五中使用的机器学习例子出发,了解如何用MBML来匹配实力相近的玩家。
数据表:
| Game | Winner | Loser |
|---|---|---|
| 1 | player0 | player1 |
| 2 | player0 | player3 |
| 3 | player0 | player4 |
| 4 | player1 | player2 |
| 5 | player3 | player1 |
| 6 | player4 | player2 |
模型非常简单,我们假设所有玩家的水平呈现高斯分布。他们水平的集合为图中Skills[player]。每次比赛有winner也有losser,他们的水平分别是图中Skills[Winner[Game]]和Skills[Loser[Game]],由于每次比赛的时候参赛者发挥的水平可能在真是水平的上下波动,我们把他们发挥出的水平分布看作一个以他们的实际水准为平均值,标准差为1的高斯分布,然后比较他们发挥出的水平的大小,大的人获胜。
而如何训练这个模型呢?我们向模型里代入实际的数据,使用贝叶斯定理计算玩家水平分布的后验概率(这是框架帮我们计算的),替换掉原本我们假设的先验概率。在迭代次数够多、数据够大的情况下,我们的模型就会得出各玩家的准确水平,并且能对各个玩家之间的胜负进行准确的预测。
这个模型已经在xbox中的数款游戏(光环五等)中得到应用,其升级版TrueSkill2在实际运用中达到了百分之68的预测准确度。
using System;
using Range = Microsoft.ML.Probabilistic.Models.Range;
using System.Linq;
using Microsoft.ML.Probabilistic;
using Microsoft.ML.Probabilistic.Distributions;
using Microsoft.ML.Probabilistic.Models;
using Microsoft.ML.Probabilistic.Compiler.Visualizers;
namespace TrueSkill
{
class Program
{
static void Main(string[] args)
{
// The winner and loser in each of 6 samples games
var winnerData = new[] { 0, 0, 0, 1, 3, 4 };
var loserData = new[] { 1, 3, 4, 2, 1, 2 };
// Define the statistical model as a probabilistic program
var game = new Range(winnerData.Length);
var player = new Range(winnerData.Concat(loserData).Max() + 1);
var playerSkills = Variable.Array<double>(player);
playerSkills[player] = Variable.GaussianFromMeanAndVariance(6, 9).ForEach(player);
var winners = Variable.Array<int>(game).Named("Winner");
var losers = Variable.Array<int>(game).Named("Loser");
using (Variable.ForEach(game))
{
// The player performance is a noisy version of their skill
var winnerPerformance = Variable.GaussianFromMeanAndVariance(playerSkills[winners[game]], 1.0);
var loserPerformance = Variable.GaussianFromMeanAndVariance(playerSkills[losers[game]], 1.0);
// The winner performed better in this game
Variable.ConstrainTrue(winnerPerformance > loserPerformance);
}
// Attach the data to the model
winners.ObservedValue = winnerData;
losers.ObservedValue = loserData;
// Run inference
var inferenceEngine = new InferenceEngine();
inferenceEngine.SaveFactorGraphToFolder = "graph";
inferenceEngine.ShowFactorGraph = true;
InferenceEngine.Visualizer = new WindowsVisualizer();
var inferredSkills = inferenceEngine.Infer<Gaussian[]>(playerSkills);
// The inferred skills are uncertain, which is captured in their variance
var orderedPlayerSkills = inferredSkills
.Select((s, i) => new { Player = i, Skill = s })
.OrderByDescending(ps => ps.Skill.GetMean());
foreach (var playerSkill in orderedPlayerSkills)
{
Console.WriteLine($"Player {playerSkill.Player} skill: {playerSkill.Skill}");
}
}
}
}
Compiling model...done.
Iterating:
.........|.........|.........|.........|.........| 50
Player 0 skill: Gaussian(9.517, 3.926)
Player 3 skill: Gaussian(6.834, 3.892)
Player 4 skill: Gaussian(6.054, 4.731)
Player 1 skill: Gaussian(4.955, 3.503)
Player 2 skill: Gaussian(2.639, 4.288)
可以看到我们的模型认为玩家0的水平最高
本文章使用limfx的vsocde插件快速发布